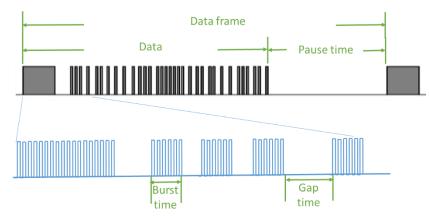
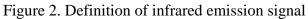


Infrared Receiver Module (IRM) Application Note


1. Introduction :

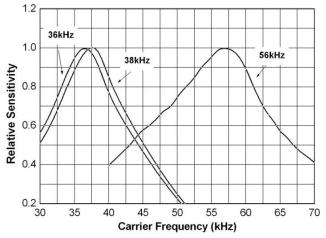

The earth is filled with electromagnetic waves of various wavelengths. The so-called visible (color) light is the electromagnetic spectrum visible to the human eye, and its wavelength is 380nm to 770 nm. In order to avoid human eye discomfort caused by the light emitted by the remote controller and reduce the interference caused by general artificial light sources, so choose the human eye invisible infrared wavelength. In the industry currently almost 940 nm wavelengths are used for the remote control transmitter devices.

Ultraviolet (UV)	Visible Light	Infrared (IR)
100~380nm	380~770nm	770~1,000,000nm

Figure 1.Electromagnetic Wavelength Distribution

The application of infrared remote control is also belong to wireless signal transmission, it's similar to wireless transmission technologies. In order to avoid the interference of electromagnetic waves of the same wavelength in the environment, the carrier signal shown in Figure 2 is added to the transmission signal (carrier frequency). The bandwidth of carrier frequency for remote control applications is 30 to 60 kHz, and 38 kHz is the most to use for carrier frequency.

2. Instructions for IRM selection :


The most of infrared remote control system has its own carrier frequency and IR protocol. Different IRM support different type protocols correspondingly. Please refer the support protocol list in Figure 3 of specification before selecting the IRM. Also note that the carrier frequency and the IRM model of the protocol match. (The IRM products of Everlight have different frequencies but same chip of IRM models are sharing the same one specification). The IRM carrier frequency will be decided at the factory. If the IRM setup with a center frequency of 38kHz, it can also receive the infrared protocol of 36kHz or 40KHz. However, the receiving distance will be shorter than the protocol of 38 kHz carrier frequency, so choosing the right center frequency IRM can optimize the best receiving distance. For the IRM selectable of center frequency for each model, please refer to the specification in Figure 4. Supported Carrier Frequency and Relative Sensitivity

Protocol	Suitable	Protocol	Suitable	Protocol	Suitable
NEC	Yes	Cisco	Yes	Sony 12 Bit	Yes
Panasonic	Yes	Toshiba	Yes	Sony 15 Bit	Yes
RC5	Yes	XMP	Yes	Sony 20 Bit	No
RC6	Yes	r-step	Yes	Mitsubishi	No
Sharp	Yes	JVC	No	Continuous	No

1.) Supported infrared protocol of IRM is support repeat control.

2.) Generally, Continuous Code points at Pause time less than 10ms continuous emitting signal.

Figure 3. Support Protocol Table

Fig.8 Relative Sensitivity vs. Carrier Frequency

Figure 4. Support Carrier Frequency vs. Relative Sensitivity

General IRM is not able to receive continuing signal, besides Figure 2, it defines gap time(less than 1ms). Passing each completed data needs a longer pause time (> 10ms). If the infrared protocol used is not listed in the table of the specification or special considerations for customized requirements protocol, the minimum requirements listed below of specifications should be noted. For the definitions of burst length and gap length, please refer to Figure 2.

	IRM-3636Z3		
	IRM-3638Z3		
	IRM-3640Z3		
Min burst length T _B	10 cycles		
Min gap length T _G	10 cycles		
Min. data pause time T _{Pause}	Min. 22ms		

3. Other supplementary notes :

Infrared transmission and reception are inverting shown in Figure 5. When the IR LED is not transmitting, the IRM receiver will output high level; Once IRM received the IR signal, IRM receiver will output low level. IR LED emission timing and the IRM signal output timing will be delayed and not equal, thus Tburst \neq TpwL and TpwL will change with distance. Each model has a different variation trend. The variation trend like fig.6 can be found in the specification. When the difference between Tburst and TpwL is greater than the specification value, we define the distance is the receiving distance.

Due to the pulse width variation will affect the MCU decode accuracy, so user define MCU IR protocol decode tolerance should consider the IRM pulse width variation trend.

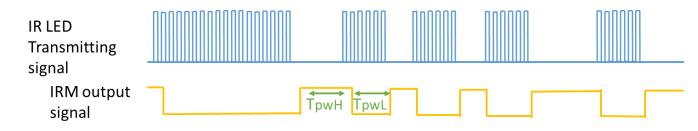


Figure 5. Infrared emission and Reception signals

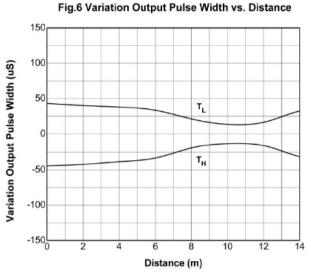


Figure 6. Variation Output Pulse Width vs. Distance

The test signal of pulse width variation is as shown in Figure 7 and specification of pulse width variation is shown in figure 8. Due to the different encoding specifications of each IR remote control protocol, when designing the remote control decoding tolerances, please refer to the IRM pulse width variation trend, which will affect the distance of the remote control receiving distance.

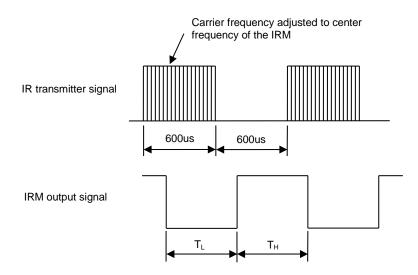


Figure 7. IR transmitter signal and IRM output signal

Output low pulse	ΤL	400	600	800	us	See chapter test
Output high pulse	Тн	400	600	800	us	 method, L₀ = 0.1m ~ 20m

Figure 8. Specification of pulse width variation

The reception of IRM will be interfered by Wifi, sunlight or other light sources which containing infrared that will shorten the IRM receiving distance or even worst. The IRM may not be able to work. Therefore, please try to stay away from the source of interference or increase the shielding barrier to isolate the interference source.

The information in this application note only provides for customers design reference. Please verify the actual application of the product. If you have any other questions, please contact to Everlight Electronics for advanced technical support.